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Method of Particular Solutions 

for Linear, Two-Point Boundary- Value Problems 

1 Part 1 - Preliminary Examples 

ANGELO M I E L E ~  

- Abstract. The methods commonly employed for s0lvb-g linear, two-point 

boundary value problems require the use of two sets of differential equations: the 

original set and the derived set. This derived set is the adjoint set if the method of 

adjoint equations is used, the Green's functions set if the method of Green's functions 

is used, and the homogeneous set if the method of complementary functions is used. 

With particular regard to high- speed digital computing operations, this report 

explores an alternate method, the method of particular solutions, in which only the  

original, nonhomogeneous set is used. As a preliminary example, a second-order 

system is considered, and the boundary-value problem is solved by combining linearly 

several particular solutions of the original, nonhomogeneous set. Both the case of 

an  uncontrolled system and that of a controlled system are considered. 

This research was supported by the NASA-Manned Spacecraft Center: Grant No. 1 

NGR-44-006-089. 

Professor of Astronautics and Director of the Aero-Astronautics Group, Department 
of Mechanical and Aerospace Engineering and Materials Science, Rice University, 
Houston, Texas. 
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1. Introduction 

In recent years, considerable attention has been devoted to the solution of 

the two-point boundary-value problem for linear differential systems. Among the 

techniques available, we mention (a) the method of adjoint equations (Refs. 1-2), 

(b) the method of Green's functions (Refs. 3-6),  and (c) the method of complementary 

functions (Refs. 7- 10). Other techniques involve the use of series expansions, for 

instance, Fourier ser ies  (Ref. 11) and Chebyshev series (Ref. 12). With reference to 

(b), the determination of the Green's functions has been the object of several recent 

papers (see, for example, Refs. 13- 15). 

Methods (a) through (c) have one common characteristic. Each requires the 

solution of two differential sets, namely, the original set plus the derived set. This 

derived set is the adjoint set in Case (a), the Green's functions set in Case (b), and 

the homogeneous set  in Case (c). With particular regard to  high-speed digital computing 

operations, it has occurred to this writer that programming can be made simpler 

if one employs the original set only. 

This technique, a modification of (c), consists of combining linearly several 

particular solutions of the original, nonhomogeneous set. For this reason, it can 

be termed the method of particular solutions. It has the following advantages with 

respect to the previous techniques : (i) it makes use of only one differential system, 

namely, the original, nonhomogeneous set; (ii) each particular solution can be made 

to satisfy the same prescribed initial conditions; and (iii) in a physical problem, each 

particular solution represents a physically possible trajectory, even though it satisfies 
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only the initial conditions and not the final conditions. 

For the particular case of a linear differential equation of the second order, 

the idea of combining particular solutions of the original, nonhomogeneous equation 

was employed by Fox in Chapter 8 of Ref. 8 .  However, this idea was abandoned 

in favor of (c )  in order to reduce the number of undetermined constants by one. In 

the opinion Qf this wri ter ,  this m-inor advantzge is more than offset by comider&ions 

(i) through (iii), especially for complex physical systems. 

This report is an introduction to the method of particular solutions. Several 

preliminary examples are treated in terms of two second-order systems, one of the 

uncontrolled type and one of the controlled type. In a subsequent report, the general 

theory is presented for a system of any order (Ref. 16). 
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2 .  Uncontrolled System 

In this section, we consider the following linear, nonhomogeneous system of 

3 
order two : 

k =ax +by  + c 

in which t is the independent variable, x and y are the dependent variables, and the 

dot sign denotes a derivative with respect to  t .  W e  assume that the coefficients a, b, 

c ,  and e, f, g are time-dependent and continuous. We also assume that the following 

boundary conditions must be satisfied: 

x(0) = a  

x(7) = Y 

where a, Y, 7 are prescribed constants . Then, we formulate the following problem: 

Find the functions 

which satisfy the differential system (l), the initial condition (2), and the final 

condition (3). 

In order to solve this problem, we integrate Eqs . (1) forward twice from t = 0 

using two different sets of initial conditions and the stopping condition t = I-. In the 

~~~ ~ 

The system (1) can be called uncontrolled in that its trajectory in the txy-space is 
completely determined once the initial conditions are given. 

3 
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first integration (subscript l ) ,  we employ the initial conditions 

and obtain the particular solution 

In the second integration (subscript 2), we employ the initial conditions 

X2(O\ = a, y2(0) = a2 

and obtain the particular solution 

(7) 

In each integration, the initial condition for  the x-variable is identical with (2); the 

initial condition for the y-variable is arbitrary and can be changed, if necessary. 

Next, we introduce the undetermined constants k and k and form the linear 1 2 

combinations 

x = k x  + k x  1 1  2 2  

y = k y  + k y  1 1  2 2  

Then, we inquire whether, by an appropriate choice of the constants, these linear 

combinations can satisfy the differential equations (l), the initial condition (2), and 

the final condition (3). 



6 

By substituting (9) into (1) and rearranging terms, we obtain the relations 

AAR- 48 

kl(Gl - a~ - by1) + k2(k2 - a~ - by2) = c 1 2 

kl(iTl - - fY1) + k2(j’2 - ex2 - fY2) = g 

Since each pair of functions (6) and (8) is a solution of (l), Eqs . (10) become 

k c + k c = c  
1 2 

k g + k  g = g  
1 2 

and are satisfied providing the constants are such that 

k + k  = 1  
1 2  

Substitution of (9-1) into the initial condition (2) leads to  the relation 

k x (0) + k2x2(0) = a 1 1  

In the light of (5- 1) and (7- l), Eq. (13) can be rewritten as 

k a + k  a = a  
1 2 

and is satisfied providing the constants are consistent with (12). 

Finally, substitution of (9-1) into the final condition (3) leads to the relation 

k x (7) + k x (7) = y 
1 1  2 2  



7 AAR-48 

which, together with (12), determines the constants k and k 1 2'  

problem is solved in principle. 

In this way, the proposed 

2 . 1 .  Remarks. The following comments a r e  pertinent to  the previous discussion: 

(a) The particular solutions (6) and (8) must be linearly independent. This 

is precisely the case, since the initial condition (5-2) differs from (7-2). 

(S) Because of the arbitrariness of the initial conditions for the particular 

solutions, it is conceivable that the matrix of the coefficients in Eqs . (12) and (15) may be 

ill-conditioned. Should this situation arise, corrective steps can be taken by changing 

(5-2) or  (7-2). 

(c) Thus far, the continuity of the coefficients a, b, c and e, f ,  g has been 

assumed. If this restriction is removed, that is, if the coefficients exhibit a finite 

number of discontinuities, the previous results a r e  still valid. The only difference 

is that, in the continuous case, 2 and 9 a r e  continuous functions of time; while, in  the 

discontinuous case, X and 9 exhibit discontinuities even though x and y are continuous. 

2 . 2 .  Relation to  the Method of Complementary Functions. Here, we establish 

a connection between the method of particular solutions and the method of complementary 

functions. First, we solve Eq. (12) in t e rms  of the constant k as follows: 2 

Next, we rewrite Eqs . (9) in the form 

x = k v  + x  1 1  2 

y = k w  + y  1 1  2 
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Therefore, in the method of complementary functions, the solution of (1) can be obtained 

by combining linearly the solution (19) of the homogeneous system (20) and the solution 

(8) of the complete system (1). However, different initial conditions must be used; 

specifically, conditions (21) apply to  the homogeneous system and conditions (7) to  the 

complete system. 

-- I___p_--- 

I Since (5-2) and (7-2) are arbitrary,  the initial condition (21-2) is arbitrary and can be 
changed, if necessary. 
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where, by definition, 

v l = x  1 - x  2, w1 = Y 1  - Y2 

W e  note that the functions 

v 1 = v,(% w 1 = W,(t) 

are solutions of the following homogeneous system derived from (1): 

; = a v + b w  

+ = e v + f w  

W e  also note that the  following initial conditions must be employed 4. . 

and that the constant kl must be determined from the f inal  condition 
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2.3. Final Time Unspecified. It is now assumed that the final time T is 

unspecified and that the differential system (1) is subject t o  the boundary conditions 

x(0)  = a 

AAR- 48 

where a, y ,  6 a re  prescribed constants and T is to be determined. 

Once more, we integrate Eqs . (1) forward twice from t = 0. In the first  

integration, the initial conditions (5) a r e  employed, and (6) is the corresponding solution. 

In the second integration, the initial conditions (7) are employed, and (8) is the 

corresponding solution 

differential equations ( ) and the initial condition (23) providing the constants k and 

k are consistent with (12). 

We note that the linear combinations (9) satisfy the 

1 

2 

Next, we turn our attention to t h e  final conditions. By substituting (9) into 

(24), we obtain the relations 

which are compatible with (12) if, and only if, 

1 1 

= O  
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This equation is the stopping condition of the integration process and supplies the 

final time T. Once T is known, the constants kl and k can be obtained from (25). 2 



11 AAR-48 

3 .  -- Controlled System 

5 
Here, we consider the following modification of the previous system : 

= ax + by + c + du 

9 = ex + fy + g + hu 

where u is a control and where the coefficients a,  b, c ,  d and e, f ,  g, h are time-dependent . 
We assume that the following boundary conditions must be satisifed: 

x(0) = u, y(0) = 6 (28) 

where a, 6, Y, l- a r e  prescribed constants. Then, we formulate the following problem: 

Find a set of functions 

u = u(t), x = x(t), y = y(t) 

which satisfy the differential system (27), the initial conditions (28), and the final 

condition (29). We emphasize that (27) subject to (28)-(29) admits an infinite number 

of solutions. Nevertheless, we are concerned here with finding only one among these 

infinite solutions. 

In order to  solve this problem, we  integrate Eqs . (27) forward twice from t = 0 

using the initial conditions (28), the stopping condition t = T, and two different time- 

histories of the control. In the first  integration, the control employed is u (t) and 1 

(30) 

The system (27) can be called controlled in that its trajectory in the txy-space depends 
not only on the initial conditions but also on the time-history of the control u(t). 

5 



12 AAR- 48 

the corresponding solution of Eqs . (27) is denoted by 

u 1 = U,(t), x 1 =xl(t), Y1 = u p )  

In the second integration, the control employed is u (t) and the corresponding solution 

of Eqs. (27) is denoted by 

2 

2 = U2(t)7 x2 = x p 7  Y2 = Y2(t) 

Next, we introduce the undetermined constants k and k and form the linear 1 2 

combinations 

u = k u  + k u  1 1  2 2  

x = k x  + k x  
1 1  2 2  (33) 

y = k y  + k y  1 1  2 2  

Then, we inquire whether, by an  appropriate choice of the constants, these linear 

combinations can satisfy the differential equations (27), the initial conditions (28), and 

the final condition (29). 

By substituting (33) into (27) and rearranging terms,  we obtain the relations 

kl( i l  - a~ - by - dul) + k (2 - a~ - by2 - du ) = c 
1 1 2 2  2 2 

kl(fl  - ex - fyl - hul) + k (9 - ex - fu - hu ) = g 
1 2 2  2 2  2 
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Since each triplet of functions (31) and (32) is a solution of Eqs. (27), Eqs. (34) become 

k c + k c = c  1 2 

k g S k  g = g  
1 2 

and are satisfied providing the constants are  such that 

k + k  = 1  1 2  

(35) 

Substitution of (33-2) and (33-3) into the initial conditions (28) leads to the 

relations 

klxl(0) + k x (0) = CL 2 2  
(3 7) 

klY1(0) +k2Y2(0) = B 

Since each particular solution satisfies the initial conditions (28), Eqs . (37) can be 

rewritten as 

k a + k  ct=a 1 2 

klB +k2P = B 

and are satisfied providing the constants are  consistent with (36). 

Finally, substitution of (33-2) into the final condition (29) leads to the relation 

klxl(T) + k  2 2  x (7) = y (3 9) 
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which, together with (36), determines the constants k and k 1 2 '  

problem is solved in principle. 

In this way, the proposed 

3.1. Final Time Unspecified. It is now assumed that the final time 7 is 

unspecified and that the dse ren t i a l  system (27) is subjected to the boundary conditions 

where a, 13, y, 6 a r e  prescribed constants and T is to be determined. 

Once more, we integrate Eqs . (27) forward twice from t = 0 using the initial 

conditions (40) and two different time-histories of the control. In the first integration, 

the control employed is u (t) and (31) is the corresponding solution. In the second 

integration, the control employed is u (t) and (32) is the corresponding solution. W e  

note that the linear combinations (33) satisfy the differential equations (27) and the 

prescribed initial conditions (40) providing the constants k and k are consistent with 

1 

2 

1 2 

(36). 

Next, we turn our attention to  the final conditions. By substituting (33-2) and 

(33-3) into (41), we obtain the relations 

klxl(T) + k x (7) = Y 
2 2  
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which are compatible with (36) if, and only if, 
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= O  (43) 

This equation is the stopping condition of the integration process and supplies the final 

time T. Once T is known, the constants k and k can be olxained from (42). 1 2 
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4. Discussion and Conclusions 

In the previous sections, the boundary-value problem associated with linear 

differential systems has been solved by means of the method of particular solutions. 

Several preliminary examples are presented for  both uncontrolled and controlled 

systems of the second order. The basic ideas are (i) to  perform all the integrations 

in terms of the original, nonhomogeneous system, (ii) to combine linearly several 

particular solutions, and (iii) to use the same prescribed initial conditions for all of 

the particular solutions. For each particular boundary-value problem, the required 

number of integrations equals the number of prescribed final conditions plus one 

(the stopping condition). The main result is that a linear combination of particular 

solutions consistent with (i), (ii), and (iii) automatically satisfies the differential 

system and the initial conditions as long as the sum of the constants is one. 

It is of interest to compare the present method with (a) the method of adjoint 

equations, (b) the method of Green's functions, and (c) the method of complementary 

functions. Techniques (a), (b), (c) require using two differential se t s ,  namely, the 

original set  plus the derived set. This derived set is the adjoint set in Case (a), the 

Green's functions set in  Case (b), and the homogeneous set in  Case (c). The comparison 

shows that the present method is conceptually simpler than (a), (b), o r  (c) because it 

makes use of only one differential system, because each particular solution can be made 

to satisfy the same prescribed initial conditions, and because, in a physical problem, 

each particular solution represents a physically possible trajectory, even though it 

satisfies only the initial conditions and not the final conditions. 
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The generalization of the present point of view to a system of any order is 

described in a subsequent report (Ref. 16). 
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APPENDIX A 

General Solution --- for an Uncontrolled System 

The technique derived in Section 2 can also be employed to  find the general 

solution of (1) in the closed interval LO, 71.  To do so, we integrate the differential 

system (1) three times from t = 0 using three different sets of initial conditions, 

for instance, 

where CI CI a and B1, 02, P3 are arbitrary. By doing so, we obtain the particular 

solutions 

1’ 2’ 3 
6 

1 = y l  = yl(t) 

in which the subscripts 1 ,2 ,3  denote first, second, and third integration, respectively. 

----I --- 
The initial conditions (44)-(46) are assumed to be such that the particular solutions 
(47)- (49) are linearly independent. 

6 
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Next, we introduce the undetermined constants kl, k2,k3 and form the linear 

combinations 

x = klxl + k x  2 2  
+ k x  3 3  

Then, we inquire whether, by an appropriate choice of the constants, this linear 

combination can satisfy the differential equations (1). Simple manipulations, 

omitted for the sake of brevity, show that this is precisely the case providing the 

constants a r e  such that 
I 

k l t k  t k  = 1  
2 3  

A .  1. Relation to the Method of Complementary Functions. Here, we establish 

a connection between the method of particular solutions and the method of complementary 

functions. First, we combine Eqs. (50) and (51) to obtain 

x = k v  + k v  + x  1 1  2 2  3 

y = k w  t k w  + y  1 1  2 2  3 

where, by definition, 

v1 =x l  - x3’ 

v 2 = x  2 - x  3’ 

w1 = Y 1  - Y3 

w2 =Y2 - Y3 

(53) 
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W e  note that each pair  of complementary functions 

- 
v1  - V,(t), w1 = w,(t) 

AAR- 48 

(54) 

is a solution of the homogeneous system (20) derived from (1). ?herefore, Eqs . (52) 

express a well-known theorem: The general solution of a linear, nonhomogeneous 

system is the sum of the general solution of the corresponding homogeneous system and 

a particular solution of the complete system. 

A .  2. Remark. - ?he general solution (50) of Eq. (1) contains three independent 

solutions. On the other hand, in the boundary-value problem represented by Eqs . (1)- 

(3), two independent solutions were employed. This apparent anomaly is now explained. 

If Eq. (50- 1) is combined with the initial condition (2) and the final condition ( 3 ) ,  the 

following relations are obtained: 

klxl(0) + k2x2(0) + k x (0) = cx. 3 3  

k x (7) + k x (7) + k x (7) = Y 
1 1  2 2  3 3  

and, together with (51), determine the constants k k k 1’ 2’ 3 ’  

Assume now that  (47)-(49) satisfy the initial condition (2), that is, 

a = a  = a  = a  1 2 3  (57) 

Under these conditions, Eq. (56-1) becomes 

k l a + k  a + k  a = x  2 3 
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and, therefore, is identical with (51). Since the system composed of Eqs . (51) and (56) 

admits an  infinite number of solutions, it is entirely permissible to set 

k = O  3 

7 
that is, integrate the system (1) only twice. This was precisely done in Section 2 .  

(59) 

7 
Clearly, only two independent solutions satisfying the initial condition (2) exist. 
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